Skip to main content

Thread Synchronisation Issues


Thread Synchronisation Issues


Thread Synchronisation Issues

Concurrency and Synchronisation
When multiple threads access shared resources such that some of them modify a resource and others are reading that resource then we will face all sorts of data consistency problem due to synchronisation issues among threads. For example, if thread A reads shared data which is later changed by thread B and thread A is unaware of this change. Let’s first define some terms before jumping into details –

  • Synchronisation : using atomic operations to ensure correct operation of cooperating threads.
  • Critical section : a section of code, or collection of operations, in which only one thread may be executing at a given time. E.g. shopping.
  • Mutual exclusion : mechanisms used to create critical sections (ensure that only one thread is doing certain things at a given time).

However, synchronisation can introduce thread contention, which occurs when two or more threads try to access the same resource simultaneously and cause the Java runtime to execute one or more threads more slowly, or even suspend their execution. Starvation and live lock are forms of thread contention.

  • Starvation : Starvation describes a situation where a thread is unable to gain regular access to shared resources and is unable to make progress. This happens when shared resources are made unavailable for long periods by “greedy” threads. For example, suppose an object provides a synchronised method that often takes a long time to return. If one thread invokes this method frequently, other threads that also need frequent synchronised access to the same object will often be blocked.
  • Live lock : A thread often acts in response to the action of another thread. If the other thread’s action is also a response to the action of another thread, then livelock may result. As with deadlock, live locked threads are unable to make further progress. However, the threads are not blocked — they are simply too busy responding to each other to resume work. This is comparable to two people attempting to pass each other in a corridor: Alphonse moves to his left to let Gas ton pass, while Gas ton moves to his right to let Alphonse pass. Seeing that they are still blocking each other, Alphone moves to his right, while Gas-ton moves to his left. They’re still blocking each other.

Typically, mutual exclusion achieved with a locking mechanism: prevent others from doing something. For example, before shopping, leave a note on the refrigerator: don’t shop if there is a note. We can lock an object that can only be owned by a single thread at any given time. Basic operations on a lock:

  • Acquire: mark the lock as owned by the current thread; if some other thread already owns the lock then first wait until the lock is free. Lock typically includes a queue to keep track of multiple waiting threads.
  • Release: mark the lock as free (it must currently be owned by the calling thread).

Synchronisation mechanisms need more than just mutual exclusion; also need a way to wait for another thread to do something (e.g., wait for a character to be added to the buffer). We can achieve this by using Condition variables.

Condition variables are used to wait for a particular condition to become true (e.g. characters in buffer).

  • _wait(condition, lock): release lock, put thread to sleep until condition is signaled; when thread wakes up again, re-acquire lock before returning.
  • signal(condition, lock): if any threads are waiting on condition, wake up one of them. Caller must hold lock, which must be the same as the lock used in the wait call.
  • broadcast(condition, lock): same as signal, except wake up all waiting threads
Thread management is done in user space by the thread library. When thread makes a blocking system call, the entire process will be blocked. Only one thread can access the Kernel at a time, so multiple threads are unable to run in parallel on multiprocessors.


Comments

Popular posts from this blog

Multitasking System

  Multitasking system ·           Technically , multitasking is same as multi programming ·           In a multitasking operating system, s single user can execute multiple programs at the same time ·           We can also say, multitasking is the system capability to work on more than one job or process at the same time. ·           It means that whenever a job needs to perform I/O operation, the cpu can be used for execting some other job                                                        diagram of multi tasking     ·           There are two type of multitasking : 1.       ...

Monolithic Architecture

  Monolithic Architecture Monolith means composed all in one piece. The  Monolithic  application describes a single-tiered  software  application in which different components combined into a single program from a single platform. Components can be: Authorization — responsible for authorizing a user Presentation — responsible for handling HTTP requests and responding with either HTML or JSON/XML (for web services APIs). Business logic — the application’s business logic. Database layer — data access objects responsible for accessing the database. Application integration — integration with other services (e.g. via messaging or REST API). Or integration with any other Data sources. Notification module — responsible for sending email notifications whenever needed. Example for Monolithic Approach Consider an example of Ecommerce application, that authorizes customer, takes an order, check products inventory, authorize payment and ships ordered products. This applicat...

Change the priority of a process

  Change the priority of a process You can tell the computer that certain processes should have a higher priority than others, and so should be given a bigger share of the available computing time. This can make them run faster, but only in certain cases. You can also give a process a  lower  priority if you think it is taking up too much processing power. Go to the  Processes  tab and click on the process you want to have a different priority. Right-click the process, and use the  Change Priority  menu to assign the process a higher or lower priority. There is typically little need to change process priorities manually. The computer will usually do a good job of managing them itself. (The system for managing the priority of processes is called  nice .) Does higher priority make a process run faster? The computer shares its processing time between all of the running processes. This is normally shared intelligently, so programs that are doing more ...

Batch Processing Operating System

  Batch processing system ·           Batch processing is one of the oldest method    of running the programs ·           The computer in the past were very large in size and their I/O devices were very different from those that are used today. The job processing was not interactive as it is today. ·           The user did not interact directly with computer system.   ·           The process scheduling , memory management, file management and I/Omanagement functions are quite simple in batch processing system   1.         Process scheduling (i.e. allocation strategy for a processor is typically in order of their arrival i.e. first come first served(FCFS)basis.   2.         Memory management  is done by divi...
 C omparison between real time and time sharing operating system P rotection and s ecurity  • Protection refers to a mechanism for controlling the access of program s processes, or users to the resources defined by computer system. • The concept of protection came with the advent of multiprogramming where several processes compete for the use of CPU. • the purpose was to confine each users program to its assigned areaof memory so that the programs cannot interface and harm each other. • Protection in main memory is particularly important because of address translation. The purpose of protection is to allow concurrently running process to share the common physical address space. • Protection also ensure that only process that have gained proper authorization from the operating system can operate on memory segment , the CPU, files and other resources.