Skip to main content

Monolithic Architecture

 

Monolithic Architecture

Monolith means composed all in one piece. The Monolithic application describes a single-tiered software application in which different components combined into a single program from a single platform. Components can be:

  • Authorization — responsible for authorizing a user
  • Presentation — responsible for handling HTTP requests and responding with either HTML or JSON/XML (for web services APIs).
  • Business logic — the application’s business logic.
  • Database layer — data access objects responsible for accessing the database.
  • Application integration — integration with other services (e.g. via messaging or REST API). Or integration with any other Data sources.
  • Notification module — responsible for sending email notifications whenever needed.

Example for Monolithic Approach

Consider an example of Ecommerce application, that authorizes customer, takes an order, check products inventory, authorize payment and ships ordered products. This application consists of several components including e-Store User interface for customers (Store web view) along with some backend services to check products inventory, authorize and charge payments and shipping orders.

Image for post

Despite having different components/modules/services, the application is built and deployed as one Application for all platforms (i.e. desktop, mobile and tablet) using RDBMS as a data source. Benefits and Drawbacks of Monolithic Architecture.

1. Monolithic architecture

2.    Layerd archtecture.

3.     Virtual machine architecture

4.     Exokernel architecture

5.    Client server architecture

      Micro kernel architecture

Benefits:

  • Simple to develop — At the beginning of a project it is much easier to go with Monolithic Architecture.
  • Simple to test. For example, you can implement end-to-end testing by simply launching the application and testing the UI with Selenium.
  • Simple to deploy. You have to copy the packaged application to a server.
  • Simple to scale horizontally by running multiple copies behind a load balancer.

Drawbacks:

  • Maintenance — If Application is too large and complex to understand entirely, it is challenging to make changes fast and correctly.
  • The size of the application can slow down the start-up time.
  • You must redeploy the entire application on each update.
  • Monolithic applications can also be challenging to scale when different modules have conflicting resource requirements.
  • Reliability — Bug in any module (e.g. memory leak) can potentially bring down the entire process. Moreover, since all instances of the application are identical, that bug impact the availability of the entire application
  • Regardless of how easy the initial stages may seem, Monolithic applications have difficulty to adopting new and advance technologies. Since changes in languages or frameworks affect an entire application, it requires efforts to thoroughly work with the app details, hence it is costly considering both time and efforts.

Comments

Popular posts from this blog

Multi Level Queue Scheduling (MLQ)

  Multi Level Queue Scheduling (MLQ) ·          Multilevel queue scheduling classifies the processes according to their types for example, a multilevel queue scheduling algorithm makes a common. ·          In this scheduling ready queue is divided into various queue that are called sub queues. A subqueue is a distinct operational queue ·          The process are permanently assigned to subqueues, generally based on some property of the process such as memory size,priority or process type ·          Each subqueue has its process sucheduling algorithm. For example interactive process at the foreground may use round robin scheduling while batch jobs at the background may use the FCFS method ·          For example, consider a system with four different queues 1.   ...

Micro kernel architecture

  Micro kernel  architecture What is Kernel? A kernel is an important part of an OS that manages system resources. It also acts as a bridge between the software and hardware of the computer. It is one of the first program which is loaded on start-up after the bootloader. The Kernel is also responsible for offering secure access to the machine's hardware for various programs. It also decides when and how long a certain application uses specific hardware. What is Microkernel? Microkernel  is a software or code which contains the required minimum amount of functions, data, and features to implement an operating system. It provides a minimal number of mechanisms, which is good enough to run the most basic functions of an operating system. It allows other parts of the operating system to be implemented as it does not impose a lot of policies. Microkernels and their user environments are usually implemented in the C++ or C programming languages with a little bit of assembly. Ho...

Exokernel architecture

Exokernel architecture Most of us know what kernels are and how do they work to make programmers’ lives easier. But, how many of us know what exokernels are? I hope you will be able to get a brief introduction on this terminology through this blog. Let’s start with a brief introduction on kernel. What is a kernel? A kernel is the foundational layer of an operating system that functions at a basic level, communicating with hardware and managing resources, such as CPU and the memory. It works as an interface between the user application and the hardware. There   are two main types of kernel 1. Micro kernel 2. Monolithic Kernel 1.  Monolithic architecture 2.      Layerd archtecture . 3.       Virtual machine architecture 4.       Exokernel architecture 5.      Client server architecture   6.       Micro kernel architecture Now let’s head into our main focus. What is an Exokern...

ENTERPROCESS COMMUNICATION AND SYNCHRONIZATION

      ENTERPROCESS COMMUNICATION AND SYNCHRONIZATION ·          In multi programming environment multiple process co-exit . a single   program may be broken into number of processes. ·          The process are classified into two categories : independent processes and cooperating processes. ·          An independent process is a standalone process that does not share any data with any other process. It cannot affect or be affected by the other processes executing   in the system. In other words, the modification made to an independent process does not affect the functioning of other process. ·          A cooperating processes is a process that shares data with other processes in a system it can affect or be affectedly the other processes executing in the system ·      ...

Shortest Job First Scheduling (SJF)

  Shortest Job First Scheduling (SJF) ·          SJF ia also known as shortest-job-next(SJN) algorithm and is faster than FCFS. ·          In SJF, the process with the least estimated execution time is selected from the ready queue for   execution. ·          For this, SJF algorithm associates with each process, the length of its next CPU burst. When the CPU is available, it is assigned to the process that has the smallest next CPU burst. ·          If tow processes have the same length of next CPU burst ,FCFS scheduling algorithm is used to break the tie. ·          SJF algorithm can be preemptive or non-preemptive.     Non-preeptive SJF ·          In non-preemptive SJF, scheduling, CPU is always assigned to the ...