Skip to main content

Monolithic Architecture

 

Monolithic Architecture

Monolith means composed all in one piece. The Monolithic application describes a single-tiered software application in which different components combined into a single program from a single platform. Components can be:

  • Authorization — responsible for authorizing a user
  • Presentation — responsible for handling HTTP requests and responding with either HTML or JSON/XML (for web services APIs).
  • Business logic — the application’s business logic.
  • Database layer — data access objects responsible for accessing the database.
  • Application integration — integration with other services (e.g. via messaging or REST API). Or integration with any other Data sources.
  • Notification module — responsible for sending email notifications whenever needed.

Example for Monolithic Approach

Consider an example of Ecommerce application, that authorizes customer, takes an order, check products inventory, authorize payment and ships ordered products. This application consists of several components including e-Store User interface for customers (Store web view) along with some backend services to check products inventory, authorize and charge payments and shipping orders.

Image for post

Despite having different components/modules/services, the application is built and deployed as one Application for all platforms (i.e. desktop, mobile and tablet) using RDBMS as a data source. Benefits and Drawbacks of Monolithic Architecture.

1. Monolithic architecture

2.    Layerd archtecture.

3.     Virtual machine architecture

4.     Exokernel architecture

5.    Client server architecture

      Micro kernel architecture

Benefits:

  • Simple to develop — At the beginning of a project it is much easier to go with Monolithic Architecture.
  • Simple to test. For example, you can implement end-to-end testing by simply launching the application and testing the UI with Selenium.
  • Simple to deploy. You have to copy the packaged application to a server.
  • Simple to scale horizontally by running multiple copies behind a load balancer.

Drawbacks:

  • Maintenance — If Application is too large and complex to understand entirely, it is challenging to make changes fast and correctly.
  • The size of the application can slow down the start-up time.
  • You must redeploy the entire application on each update.
  • Monolithic applications can also be challenging to scale when different modules have conflicting resource requirements.
  • Reliability — Bug in any module (e.g. memory leak) can potentially bring down the entire process. Moreover, since all instances of the application are identical, that bug impact the availability of the entire application
  • Regardless of how easy the initial stages may seem, Monolithic applications have difficulty to adopting new and advance technologies. Since changes in languages or frameworks affect an entire application, it requires efforts to thoroughly work with the app details, hence it is costly considering both time and efforts.

Comments

Popular posts from this blog

Multitasking System

  Multitasking system ·           Technically , multitasking is same as multi programming ·           In a multitasking operating system, s single user can execute multiple programs at the same time ·           We can also say, multitasking is the system capability to work on more than one job or process at the same time. ·           It means that whenever a job needs to perform I/O operation, the cpu can be used for execting some other job                                                        diagram of multi tasking     ·           There are two type of multitasking : 1.       ...

Batch Processing Operating System

  Batch processing system ·           Batch processing is one of the oldest method    of running the programs ·           The computer in the past were very large in size and their I/O devices were very different from those that are used today. The job processing was not interactive as it is today. ·           The user did not interact directly with computer system.   ·           The process scheduling , memory management, file management and I/Omanagement functions are quite simple in batch processing system   1.         Process scheduling (i.e. allocation strategy for a processor is typically in order of their arrival i.e. first come first served(FCFS)basis.   2.         Memory management  is done by divi...

Exokernel architecture

Exokernel architecture Most of us know what kernels are and how do they work to make programmers’ lives easier. But, how many of us know what exokernels are? I hope you will be able to get a brief introduction on this terminology through this blog. Let’s start with a brief introduction on kernel. What is a kernel? A kernel is the foundational layer of an operating system that functions at a basic level, communicating with hardware and managing resources, such as CPU and the memory. It works as an interface between the user application and the hardware. There   are two main types of kernel 1. Micro kernel 2. Monolithic Kernel 1.  Monolithic architecture 2.      Layerd archtecture . 3.       Virtual machine architecture 4.       Exokernel architecture 5.      Client server architecture   6.       Micro kernel architecture Now let’s head into our main focus. What is an Exokern...

Change the priority of a process

  Change the priority of a process You can tell the computer that certain processes should have a higher priority than others, and so should be given a bigger share of the available computing time. This can make them run faster, but only in certain cases. You can also give a process a  lower  priority if you think it is taking up too much processing power. Go to the  Processes  tab and click on the process you want to have a different priority. Right-click the process, and use the  Change Priority  menu to assign the process a higher or lower priority. There is typically little need to change process priorities manually. The computer will usually do a good job of managing them itself. (The system for managing the priority of processes is called  nice .) Does higher priority make a process run faster? The computer shares its processing time between all of the running processes. This is normally shared intelligently, so programs that are doing more ...