Skip to main content

Message Delivery Protocol

 

Message Delivery Protocol

·         A protocol is a set of rules and conventions shared by communicating entities .

·         Message passing can be blocking or non blocking .

·         In blocking protocol, a sender process is blocked till the message selivered to the . in this case , sender process has guarantee that the message sent by it ie delivered before it continues its execution .

A blocking protocol normally includes:

1.       Blocking send : the sender process is blocked until the message is received by the receiving process or by the mailbox.

2.       Blocking receive : the receiver nlocks until a message is available thus when both sender as well as receiver is blocked ,it is known as rebdevezevous . this combination allows for tight sysnchronization between process.

·         In non blockeing protocol, asender continues the execution after performing a send operation irrespective of whether the message is delivered or not

·         A non blocking protocol has the advantage that a sender is free to continue its execution immediately after sending a message

·         However , sender has no means of knoiwing when(and wheather )its message  is delivered to the receiver.

     

·         A non blocking send : the sending process sends the message and resumes operation.

·         Non blocking receive: the receiver retrieves either a valid message or a null.

 

Buffering

Wheather the communication is direct or indirect , message exchanged by communicating processes reside in a temporary queue.

There are  three different  ways of implementing such queue.

 

Zero capacity

·         Zero capacity queue cannot keep and message waiting in it , thus it has maximum length 0

·         For this , sending process must be blocked until the receiving process receives the message .

·         System with zero capacity queue is known as message system with no buffering.

 

Bounded capacity

·         Bounded capacity queue has finite length n. thus it can have n message.

waiting in it .

·         If the queue is not full , new message can be placed in the queue and the sending process is not blocked , it not blocked , it can continue execution without waiting.

·         If the link or queue is full , then the sender must be blocked until space is available in the queue.

·         This system is also known as automatic buffering .

 Unbounded capacity

·         Unbounded capacity queue has infinite length . thus any number of messages can wait in it .

In such a system , sending process is never blocked , can continue execution without waiting

Shared memory model

·         Normally , process use memory areas within the scope of virtual memory space . also memory management systems ensure that every process has a  well-defined and separate data and separate data and code area.

·         In shared memory model parts of private address space of two or more rae processes are mapped to same physical memory.

·         Such a memory areas are called shared memory regions.


Comments

Popular posts from this blog

Monolithic Architecture

  Monolithic Architecture Monolith means composed all in one piece. The  Monolithic  application describes a single-tiered  software  application in which different components combined into a single program from a single platform. Components can be: Authorization — responsible for authorizing a user Presentation — responsible for handling HTTP requests and responding with either HTML or JSON/XML (for web services APIs). Business logic — the application’s business logic. Database layer — data access objects responsible for accessing the database. Application integration — integration with other services (e.g. via messaging or REST API). Or integration with any other Data sources. Notification module — responsible for sending email notifications whenever needed. Example for Monolithic Approach Consider an example of Ecommerce application, that authorizes customer, takes an order, check products inventory, authorize payment and ships ordered products. This applicat...

Service provided By An Operating System.

  List of five service provided by an operating system. Explain how  each provides convenience to users?     The main purpose of operating system is to provide environment for the execution of programs. Thus an operating system provides certain services to program and the users of those programs. However , different operating system can provide different set of service. Some of the basis services provided by operating system are: 1.         Program execution ·          Operating system provides a convenient environment where users can run their programs ·          The operating system performs memory allocation to programs, load them into appropriate location so that they can execute. The users need not to worry about all these tasks.   2.         I/O Operation ·        ...

Thread

Thread What is Thread? A thread is a flow of execution through the process code, with its own program counter that keeps track of which instruction to execute next, system registers which hold its current working variables, and a stack which contains the execution history. A thread shares with its peer threads few information like code segment, data segment and open files. When one thread alters a code segment memory item, all other threads see that. A thread is also called a  lightweight process . Threads provide a way to improve application performance through parallelism. Threads represent a software approach to improving performance of operating system by reducing the overhead thread is equivalent to a classical process. Each thread belongs to exactly one process and no thread can exist outside a process. Each thread represents a separate flow of control. Threads have been successfully used in implementing network servers and web server. They also provide a suitable foundation ...

Process Scheduling and Process Scheduling Queues

 Process Scheduling Definition The process scheduling is the activity of the process manager that handles the removal of the running process from the CPU and the selection of another process on the basis of a particular strategy. Process scheduling is an essential part of a Multi programming operating systems. Such operating systems allow more than one process to be loaded into the executable memory at a time and the loaded process shares the CPU using time multiplexing. Process scheduling contains the subsequent sub-functions: 1. Scheduling:   Chooses the process to be executed next on the CPU. The scheduling function uses information from the Process Control Block's and selects a process based upon the scheduling policy in force. 2. Dispatching:   Sets up execution of the chosen process on the CPU. Such function involves setting up the execution environment of the process that are selected, and loading information from the PSR and registers fields of the selected into t...