Skip to main content

Exokernel architecture

Exokernel architecture

Most of us know what kernels are and how do they work to make programmers’ lives easier. But, how many of us know what exokernels are? I hope you will be able to get a brief introduction on this terminology through this blog.
Let’s start with a brief introduction on kernel.

What is a kernel?

A kernel is the foundational layer of an operating system that functions at a basic level, communicating with hardware and managing resources, such as CPU and the memory. It works as an interface between the user application and the hardware.

Image for post
Image for post

There are two main types of kernel
1. Micro kernel
2. Monolithic Kernel

Image for post

1. Monolithic architecture

2.    Layerd archtecture.

3.     Virtual machine architecture

4.     Exokernel architecture

5.    Client server architecture 

6.     Micro kernel architecture

Now let’s head into our main focus.

What is an Exokernel?

Exokernel is an operating system developed at the MIT that provides application-level management of hardware resources. This architecture is designed to separate resource protection from management to facilitate application-specific customization.
Let’s try to understand how this actually works.

Image for post

The ultimate idea behind the development of exokernel is to impose as few abstractions as possible on the developers of the applications by providing them with the freedom to use the abstractions as and when needed. This ensures that there is no forced abstraction, which is what makes exokernel different from micro-kernels and monolithic kernels.But, how does exokernel support this?

This is done by moving all the hardware abstractions into untrusted user-space libraries called “library operating systems” (libOS), which are linked to applications call the operating system on their behalf. So basically, the kernel allocates the basic physical resources of the machine (disk blocks, memory, and processor time) to multiple application programs, and each program decides on what to do with these resources.

For an example, an application can manage its own disk-block cache, it can also share the pages with the other applications, but the exokernel allows cached pages to be shared securely across all applications. Thus, the exokernel protects pages and disk blocks, but applications manage them.

Of course, not all applications need customized resource management. At these instances, the applications can be linked with the support libraries that implement the abstractions that the applications need. However, library implementations are unprivileged and can therefore be modified or replaced at the user’s needs as well. This helps the programmers to choose what level of abstraction they want, high, or low.

Principles of Exokernels

1. Separate protection and management : Resource management is restricted to functions necessary for protection.
2. Expose allocation : Applications allocate resources explicitly.
3. Expose name : Exokernels use physical names wherever possible.
4. Expose revocation : Exokernels let applications to choose which instance of a resource to give up.
5. Expose information : Exokernels expose all system information and collect data that applications cannot easily derive locally.

Merits of Exokernels

  1. Significant performance increase.
  2. Applications can make more efficient and intelligent use of hardware resources by being aware of resource availability, revocation and allocation.
  3. Ease development and testing of new operating system ideas. (New scheduling techniques, memory management methods, etc)

Demrits of Exokernels

1. Complexity in design of exokernel interfaces.
2. Less consistency.

Comments

Popular posts from this blog

Message Delivery Protocol

  Message Delivery Protocol ·          A protocol is a set of rules and conventions shared by communicating entities . ·          Message passing can be blocking or non blocking . ·          In blocking protocol , a sender process is blocked till the message selivered to the . in this case , sender process has guarantee that the message sent by it ie delivered before it continues its execution . A blocking protocol normally includes: 1.        Blocking send : the sender process is blocked until the message is received by the receiving process or by the mailbox. 2.        Blocking receive : the receiver nlocks until a message is available thus when both sender as well as receiver is blocked ,it is known as rebdevezevous . this combination allows for tight sysnchronization between process. ·...

Multitasking System

  Multitasking system ·           Technically , multitasking is same as multi programming ·           In a multitasking operating system, s single user can execute multiple programs at the same time ·           We can also say, multitasking is the system capability to work on more than one job or process at the same time. ·           It means that whenever a job needs to perform I/O operation, the cpu can be used for execting some other job                                                        diagram of multi tasking     ·           There are two type of multitasking : 1.       ...

Service provided By An Operating System.

  List of five service provided by an operating system. Explain how  each provides convenience to users?     The main purpose of operating system is to provide environment for the execution of programs. Thus an operating system provides certain services to program and the users of those programs. However , different operating system can provide different set of service. Some of the basis services provided by operating system are: 1.         Program execution ·          Operating system provides a convenient environment where users can run their programs ·          The operating system performs memory allocation to programs, load them into appropriate location so that they can execute. The users need not to worry about all these tasks.   2.         I/O Operation ·        ...

Multi user Operating System

  Multi user operating system ·           In a multi-user operating system, multiple number of user can access different resources of a computer at a same time. ·           The access is provided using a network that consists of various personal computer attached to a mainframe computer system.                                                              diagram of multi -user operating system       ·           The various personal computer can send and receive information to mainframe computer system. ·           The example    of multi-user OS are UNIX, windows 2000,novell netware.            sing...

Easytolearn E-book 2

                                                                                                                                                                          Description:here we give you pdf. about classification of operating system in which  we provide all information of classification in detail.