Skip to main content

Micro kernel architecture

 Micro kernel architecture

What is Kernel?

A kernel is an important part of an OS that manages system resources. It also acts as a bridge between the software and hardware of the computer. It is one of the first program which is loaded on start-up after the bootloader. The Kernel is also responsible for offering secure access to the machine's hardware for various programs. It also decides when and how long a certain application uses specific hardware.

What is Microkernel?

Microkernel is a software or code which contains the required minimum amount of functions, data, and features to implement an operating system. It provides a minimal number of mechanisms, which is good enough to run the most basic functions of an operating system. It allows other parts of the operating system to be implemented as it does not impose a lot of policies.

Microkernels and their user environments are usually implemented in the C++ or C programming languages with a little bit of assembly. However, other implementation languages are possible with some high-level coding.

What is a Monolithic Kernel?

Monolithic Kernel runs all the basic system services like process management, Memory management, I/O communication, and interrupt handling, file system, etc in kernel space.

In this type of Kernel approach, the entire operating system runs as a single program in kernel mode. The operating system is written as a collection of procedures that are linked together into a large executable binary program.

1. Monolithic architecture

2.    Layerd archtecture.

3.     Virtual machine architecture

4.     Exokernel architecture

5.    Client server architecture 

6.     Micro kernel architecture

Microkernel Architecture

A Microkernel is the most important part for correct implementation of an operating system. You can see in the below-given diagram, that Microkernel fulfills basic operations like memory, process scheduling mechanisms, and inter-process communication.

Microkernel Based Operating System

Microkernel is the only software executing at the privileged level. The other important functionalities of the OS are removed from the kernel-mode and run in the user mode. These functionalities may be device drivers, application, file servers, interprocess communication, etc.

Components of Microkernel

A microkernel comprises only the core functionalities of the system. A component is included in the Microkernel only if putting it outside would interrupt the functionality of the system. All other non-essential components should be put in the user mode.

The minimum functionalities required in the Microkernel are:

  • Memory management mechanisms like address spaces should be included in the Microkernel. It also contains memory protection features.
  • Processor scheduling mechanisms should contain process and thread schedulers.
  • Inter-process communication manages the servers that run their own address spaces.

Difference Between Microkernel and Monolithic Kernel

ParametersMonolithic kernelMicroKernel
BasicIt is a large process running in a single address spaceIt can be broken down into separate processes called servers.
CodeIn order to write a monolithic kernel, less code is required.In order to write a microkernel, more code is required
SecurityIf a service crashes, the whole system collapses in a monolithic kernel.If a service crashes, it never affects the working of a microkernel.
CommunicationIt is a single static binary fileServers communicate through IPC.
ExampleLinux, BSDs, Microsoft Windows (95,98, Me), Solaris, OS-9, AIX, DOS, XTS-400, etc.L4Linux, QNX, SymbianK42, Mac OS X, Integrity, etc.

Advantages of Microkernel

Here, are the pros/benefits of using Microkernel

  • Microkernel architecture is small and isolated therefore it can function better.
  • Microkernels are secure because only those components are included that disrupt the functionality of the system otherwise.
  • The expansion of the system is more accessible, so it can be added to the system application without disturbing the Kernel.
  • Microkernels are modular, and the different modules can be replaced, reloaded, modified without even touching the Kernel.
  • Fewer system crashes when compared with monolithic systems.
  • Microkernel interface helps you to enforce a more modular system structure.
  • Without recompiling, add new features
  • Server malfunction is also isolated as any other user program's malfunction.
  • Microkernel system is flexible, so different strategies and APIs, implemented by different servers, which can coexist in the system.
  • Increased security and stability will result in a decreased amount of code which runs on kernel mode

Disadvantage of Microkernel

Here, are drawback/cons of using Microkernel:

  • Providing services in a microkernel system are expensive compared to the normal monolithic system.
  • Context switch or a function call needed when the drivers are implemented as procedures or processes, respectively.
  • The performance of a microkernel system can be indifferent and may lead to some problems.

Summary:

  • A kernel is an important part of an OS that manages system resources.
  • A microkernel is a software or code which contains the required minimum amount of functions, data, and features to implement an operating system.
  • In Monolithic Kernel approach, the entire operating system runs as a single program in kernel mode
  • A Microkernel is the most important part for correct implementation of an operating system.
  • A microkernel comprises only the core functionalities of the system.
  • A monolithic kernel is a large process running in a single address space, whereas Microkernel can be broken down into separate processes called servers.
  • Microkernel architecture is small and isolated therefore it can function better
  • Providing services in a microkernel system are expensive compared to the normal monolithic system.

Comments

Popular posts from this blog

Virtual Machine Architecture

  Virtual Machine Architecture A virtual machine can exist as a standalone machine or it can exist within a vApp. A virtual machine is a software computer that, like a physical computer, runs an operating system and applications. The virtual machine consists of a set of specification and configuration files and is backed by the physical resources of a host. Every virtual machine has virtual devices that provide the same functionality as physical hardware are more portable, more secure, and easier to manage. Virtual machines can be standalone, or they can exist within a vApp. A vApp is compound object composed of one or more virtual machines as well as one or more networks. 1.    Monolithic architecture 2.     Layerd archtecture . 3.     Virtual machine architecture 4.       Exokernel architecture 5.      Client server architecture   6.       Micro kernel architecture The following figure ...

Monolithic Architecture

  Monolithic Architecture Monolith means composed all in one piece. The  Monolithic  application describes a single-tiered  software  application in which different components combined into a single program from a single platform. Components can be: Authorization — responsible for authorizing a user Presentation — responsible for handling HTTP requests and responding with either HTML or JSON/XML (for web services APIs). Business logic — the application’s business logic. Database layer — data access objects responsible for accessing the database. Application integration — integration with other services (e.g. via messaging or REST API). Or integration with any other Data sources. Notification module — responsible for sending email notifications whenever needed. Example for Monolithic Approach Consider an example of Ecommerce application, that authorizes customer, takes an order, check products inventory, authorize payment and ships ordered products. This applicat...

Real-time system

  R eal-time system ·           In a real time operating system, a job is to be completed within the    rigid time constraints otherwise job loses its meaning. ·           A real time system function correctly only if it returns the correct result within its time constraints ·           Thus, in a    real-time system, the correctness of the    computation not only depends upon the logical correctness of the computation but also upon the time at which the result is produced. R eal-time system In a real time system various functions like process scheduling, memory management, I/O management and file  management are performed as follows : 1.         Process scheduling  . the real time system uses priority based pre-emptive scheduling. each process is assigned a certain level of ...

Client server architecture

  Client server architecture Client - server architecture  is distributed  model  representing dispersed responsibilities among independent computers integrated across a network. Therefore,  it's  easy to replace, repair, upgrade and relocate a  server  while  client  remains unaffected. Advantages of Client-Server Architecture: Organizations often seek  opportunities to maintain services and quality competition to sustain its market position with the help of technologies. Deployment of client-server computing in an organization will effectively increase its productivity through the usage of  cost-effective user interface, enhanced data storage, vast connectivity and reliable application services Improved Data Sharing:   Data is retained by usual business processes and manipulated on a server is available for designated users (clients) over an authorized access. Integration of Services:   Every client is given the opp...