Skip to main content

Monolithic Architecture

 

Monolithic Architecture

Monolith means composed all in one piece. The Monolithic application describes a single-tiered software application in which different components combined into a single program from a single platform. Components can be:

  • Authorization — responsible for authorizing a user
  • Presentation — responsible for handling HTTP requests and responding with either HTML or JSON/XML (for web services APIs).
  • Business logic — the application’s business logic.
  • Database layer — data access objects responsible for accessing the database.
  • Application integration — integration with other services (e.g. via messaging or REST API). Or integration with any other Data sources.
  • Notification module — responsible for sending email notifications whenever needed.

Example for Monolithic Approach

Consider an example of Ecommerce application, that authorizes customer, takes an order, check products inventory, authorize payment and ships ordered products. This application consists of several components including e-Store User interface for customers (Store web view) along with some backend services to check products inventory, authorize and charge payments and shipping orders.

Image for post

Despite having different components/modules/services, the application is built and deployed as one Application for all platforms (i.e. desktop, mobile and tablet) using RDBMS as a data source. Benefits and Drawbacks of Monolithic Architecture.

1. Monolithic architecture

2.    Layerd archtecture.

3.     Virtual machine architecture

4.     Exokernel architecture

5.    Client server architecture

      Micro kernel architecture

Benefits:

  • Simple to develop — At the beginning of a project it is much easier to go with Monolithic Architecture.
  • Simple to test. For example, you can implement end-to-end testing by simply launching the application and testing the UI with Selenium.
  • Simple to deploy. You have to copy the packaged application to a server.
  • Simple to scale horizontally by running multiple copies behind a load balancer.

Drawbacks:

  • Maintenance — If Application is too large and complex to understand entirely, it is challenging to make changes fast and correctly.
  • The size of the application can slow down the start-up time.
  • You must redeploy the entire application on each update.
  • Monolithic applications can also be challenging to scale when different modules have conflicting resource requirements.
  • Reliability — Bug in any module (e.g. memory leak) can potentially bring down the entire process. Moreover, since all instances of the application are identical, that bug impact the availability of the entire application
  • Regardless of how easy the initial stages may seem, Monolithic applications have difficulty to adopting new and advance technologies. Since changes in languages or frameworks affect an entire application, it requires efforts to thoroughly work with the app details, hence it is costly considering both time and efforts.

Comments

Popular posts from this blog

Multilevel Feedback queue scheduling (MFQ)

  Multilevel Feedback queue scheduling (MFQ) ·          Multilevel feedback queue scheduling is an enhancement of multi-levelqueue scheduling. In this scheme, processes can move between the different queue ·          The various processes are separates in different queue on the basis of their CPU Burst Char characteristics ·          If a process consumes a lot of CPU time , it is placed into a lower priority queue. Thus I/O bound and interactive process are placed in the higher priority queue and CPU bound pricesses are in lower priority ·          If a processes waits too long in a lower priority queue it is moved higher priority queue. Such an aging prevents starvation. ·          The top priority queue is given smallest CPU time Quantum ·      ...

ENTERPROCESS COMMUNICATION AND SYNCHRONIZATION

      ENTERPROCESS COMMUNICATION AND SYNCHRONIZATION ·          In multi programming environment multiple process co-exit . a single   program may be broken into number of processes. ·          The process are classified into two categories : independent processes and cooperating processes. ·          An independent process is a standalone process that does not share any data with any other process. It cannot affect or be affected by the other processes executing   in the system. In other words, the modification made to an independent process does not affect the functioning of other process. ·          A cooperating processes is a process that shares data with other processes in a system it can affect or be affectedly the other processes executing in the system ·      ...

Round Robin

   Round Robin ·          Round robin Scheduling is similar to FCFS but preemption is addede to switch between processes. ·          In RR scheduling, processes are dispatched in FIFO but given a small amount of CPU time. This small amount of CPU time this small amount of time is known as time quantum or time slice. A time quantum is generally from 10 to 100 milliseconds ·          If a process does not complete before its time slice expires, the CPU is time slice and is given to the next waiting process in ready queue. ·          The preempted process in then places at the   tail of the ready queue. ·          If a process is completed before its time slice expires, the process itself release the CPU. The scheduler then proceeds to the next process in ready queue. ...

Multi Level Queue Scheduling (MLQ)

  Multi Level Queue Scheduling (MLQ) ·          Multilevel queue scheduling classifies the processes according to their types for example, a multilevel queue scheduling algorithm makes a common. ·          In this scheduling ready queue is divided into various queue that are called sub queues. A subqueue is a distinct operational queue ·          The process are permanently assigned to subqueues, generally based on some property of the process such as memory size,priority or process type ·          Each subqueue has its process sucheduling algorithm. For example interactive process at the foreground may use round robin scheduling while batch jobs at the background may use the FCFS method ·          For example, consider a system with four different queues 1.   ...

Direct Communicationand Indirect communication

  Direct Communication ·          Direct communication establishes a link between two processes. A communication link is a unidirectional path along which information flows. ·          two processes use single communication link to share information. ·          In this   metod, there cannot be more that one link between two processes                                                     direct communication ·          Send and receive function used in direct communication are given below : ·          Send(process name , message ,(receive(process name , message)             Send(A, message...