Skip to main content

Priority scheduling


Priority scheduling

  •          In priority scheduling , a priority is associated with all processes.
  •           Process are executed in sequence according to their priority.
  •          The CPU time is allocated to the process with highest priority.
  •          If the priority of two or more processes are equal than the process that has been inserted first  into  the ready queue is selected for execution. In other words, FCFS scheduling is performed when wo or more processes have same priority.
  •          The priorities are implemented as affixed range of numbers such as 0to 7 or 0 to 4,095.
  •          In other system, a low number indicates a high priority . in that case,a process with priority 0 is executed first.
  •          Priorities can be defined in two ways : internal or externall.
  •          Priority scheduling can be preemptive or non preemptive.

  1.          In preemptive priority scheduling, scheduler allocates the CPU to the new process if the priority of new process is higher than priorityof the running process.
  2.           In non-preemptive priority scheduling, the running process is not interrupted even if new process has a higher priority. In this case the new process will be placed at the head of ready queue.

               

Characteristics of Priority Scheduling

  • A CPU algorithm that schedules processes based on priority.
  • It used in Operating systems for performing batch processes.
  • If two jobs having the same priority are READY, it works on a FIRST COME, FIRST SERVED basis.
  • In priority scheduling, a number is assigned to each process that indicates its priority level.
  • Lower the number, higher is the priority.
  • In this type of scheduling algorithm, if a newer process arrives, that is having a higher priority than the currently running process, then the currently running process is preempted.

Example of Priority Scheduling

Consider following five processes P1 to P5. Each process has its unique priority, burst time, and arrival time.

ProcessPriorityBurst timeArrival time
P1140
P2230
P3176
P43411
P52212

Step 0) At time=0, Process P1 and P2 arrive. P1 has higher priority than P2. The execution begins with process P1, which has burst time 4.

Step 1) At time=1, no new process arrive. Execution continues with P1.

Step 2) At time 2, no new process arrives, so you can continue with P1. P2 is in the waiting queue.

Step 3) At time 3, no new process arrives so you can continue with P1. P2 process still in the waiting queue.

Step 4) At time 4, P1 has finished its execution. P2 starts execution.

Step 5) At time= 5, no new process arrives, so we continue with P2.

Step 6) At time=6, P3 arrives. P3 is at higher priority (1) compared to P2 having priority (2). P2 is preempted, and P3 begins its execution.

ProcessPriorityBurst timeArrival time
P1140
P221 out of 3 pending0
P3176
P43411
P52212

Step 7) At time 7, no-new process arrives, so we continue with P3. P2 is in the waiting queue.

Step 8) At time= 8, no new process arrives, so we can continue with P3.

Step 9) At time= 9, no new process comes so we can continue with P3.

Step 10) At time interval 10, no new process comes, so we continue with P3

Step 11) At time=11, P4 arrives with priority 4. P3 has higher priority, so it continues its execution.

ProcessPriorityBurst timeArrival time
P1140
P221 out of 3 pending0
P312 out of 7 pending6
P43411
P52212

Step 12) At time=12, P5 arrives. P3 has higher priority, so it continues execution.

Step 13) At time=13, P3 completes execution. We have P2,P4,P5 in ready queue. P2 and P5 have equal priority. Arrival time of P2 is before P5. So P2 starts execution.

ProcessPriorityBurst timeArrival time
P1140
P221 out of 3 pending0
P3176
P43411
P52212

Step 14) At time =14, the P2 process has finished its execution. P4 and P5 are in the waiting state. P5 has the highest priority and starts execution.

Step 15) At time =15, P5 continues execution.

Step 16) At time= 16, P5 is finished with its execution. P4 is the only process left. It starts execution.

Step 17) At time =20, P5 has completed execution and no process is left.

Step 18) Let's calculate the average waiting time for the above example.

Waiting Time = start time - arrival time + wait time for next burst

P1 = o - o = o
P2 =4 - o + 7 =11	
P3= 6-6=0
P4= 16-11=5
Average Waiting time = (0+11+0+5+2)/5 = 18/5= 3.6

Advantages of priority scheduling

Here, are benefits/pros of using priority scheduling method:

  • Easy to use scheduling method
  • Processes are executed on the basis of priority so high priority does not need to wait for long which saves time
  • This method provides a good mechanism where the relative important of each process may be precisely defined.
  • Suitable for applications with fluctuating time and resource requirements.

Disadvantages of priority scheduling

Here, are cons/drawbacks of priority scheduling

  • If the system eventually crashes, all low priority processes get lost.
  • If high priority processes take lots of CPU time, then the lower priority processes may starve and will be postponed for an indefinite time.
  • This scheduling algorithm may leave some low priority processes waiting indefinitely.
  • A process will be blocked when it is ready to run but has to wait for the CPU because some other process is running currently.
  • If a new higher priority process keeps on coming in the ready queue, then the process which is in the waiting state may need to wait for a long duration of time.

Summary:

  • Priority scheduling is a method of scheduling processes that is based on priority. In this algorithm, the scheduler selects the tasks to work as per the priority.
  • In Priority Preemptive Scheduling, the tasks are mostly assigned with their priorities.
  • In Priority Non-preemptive scheduling method, the CPU has been allocated to a specific process.
  • Processes are executed on the basis of priority so high priority does not need to wait for long which saves time
  • If high priority processes take lots of CPU time, then the lower priority processes may starve and will be postponed for an indefinite time.

 

Comments

Popular posts from this blog

Multilevel Feedback queue scheduling (MFQ)

  Multilevel Feedback queue scheduling (MFQ) ·          Multilevel feedback queue scheduling is an enhancement of multi-levelqueue scheduling. In this scheme, processes can move between the different queue ·          The various processes are separates in different queue on the basis of their CPU Burst Char characteristics ·          If a process consumes a lot of CPU time , it is placed into a lower priority queue. Thus I/O bound and interactive process are placed in the higher priority queue and CPU bound pricesses are in lower priority ·          If a processes waits too long in a lower priority queue it is moved higher priority queue. Such an aging prevents starvation. ·          The top priority queue is given smallest CPU time Quantum ·      ...

ENTERPROCESS COMMUNICATION AND SYNCHRONIZATION

      ENTERPROCESS COMMUNICATION AND SYNCHRONIZATION ·          In multi programming environment multiple process co-exit . a single   program may be broken into number of processes. ·          The process are classified into two categories : independent processes and cooperating processes. ·          An independent process is a standalone process that does not share any data with any other process. It cannot affect or be affected by the other processes executing   in the system. In other words, the modification made to an independent process does not affect the functioning of other process. ·          A cooperating processes is a process that shares data with other processes in a system it can affect or be affectedly the other processes executing in the system ·      ...

Round Robin

   Round Robin ·          Round robin Scheduling is similar to FCFS but preemption is addede to switch between processes. ·          In RR scheduling, processes are dispatched in FIFO but given a small amount of CPU time. This small amount of CPU time this small amount of time is known as time quantum or time slice. A time quantum is generally from 10 to 100 milliseconds ·          If a process does not complete before its time slice expires, the CPU is time slice and is given to the next waiting process in ready queue. ·          The preempted process in then places at the   tail of the ready queue. ·          If a process is completed before its time slice expires, the process itself release the CPU. The scheduler then proceeds to the next process in ready queue. ...

Multi Level Queue Scheduling (MLQ)

  Multi Level Queue Scheduling (MLQ) ·          Multilevel queue scheduling classifies the processes according to their types for example, a multilevel queue scheduling algorithm makes a common. ·          In this scheduling ready queue is divided into various queue that are called sub queues. A subqueue is a distinct operational queue ·          The process are permanently assigned to subqueues, generally based on some property of the process such as memory size,priority or process type ·          Each subqueue has its process sucheduling algorithm. For example interactive process at the foreground may use round robin scheduling while batch jobs at the background may use the FCFS method ·          For example, consider a system with four different queues 1.   ...

Direct Communicationand Indirect communication

  Direct Communication ·          Direct communication establishes a link between two processes. A communication link is a unidirectional path along which information flows. ·          two processes use single communication link to share information. ·          In this   metod, there cannot be more that one link between two processes                                                     direct communication ·          Send and receive function used in direct communication are given below : ·          Send(process name , message ,(receive(process name , message)             Send(A, message...