Skip to main content

Process Termination or destroy a process

 

Process Termination or destroy a process

  • Processes may request their own termination by making the exit( ) system call, typically returning an int. This int is passed along to the parent if it is doing a wait( ), and is typically zero on successful completion and some non-zero code in the event of problems.
    • child code:
                  int exitCode;
                  exit( exitCode );  // return exitCode; has the same effect when executed from main( )
    • parent code:
                  pid_t pid;
                  int status
                  pid = wait( &status ); 
                  // pid indicates which child exited. exitCode in low-order bits of status
                  // macros can test the high-order bits of status for why it stopped
  • Processes may also be terminated by the system for a variety of reasons, including:
    • The inability of the system to deliver necessary system resources.
    • In response to a KILL command, or other un handled process interrupt.
    • A parent may kill its children if the task assigned to them is no longer needed.
    • If the parent exits, the system may or may not allow the child to continue without a parent. ( On UNIX systems, orphaned processes are generally inherited by init, which then proceeds to kill them. The UNIX nohup command allows a child to continue executing after its parent has exited. )
  • When a process terminates, all of its system resources are freed up, open files flushed and closed, etc. The process termination status and execution times are returned to the parent if the parent is waiting for the child to terminate, or eventually returned to init if the process becomes an orphan. ( Processes which are trying to terminate but which cannot because their parent is not waiting for them are termed zombies. These are eventually inherited by init as orphans and killed off. Note that modern UNIX shells do not produce as many orphans and zombies as older systems used to. )

Comments

Popular posts from this blog

Exokernel architecture

Exokernel architecture Most of us know what kernels are and how do they work to make programmers’ lives easier. But, how many of us know what exokernels are? I hope you will be able to get a brief introduction on this terminology through this blog. Let’s start with a brief introduction on kernel. What is a kernel? A kernel is the foundational layer of an operating system that functions at a basic level, communicating with hardware and managing resources, such as CPU and the memory. It works as an interface between the user application and the hardware. There   are two main types of kernel 1. Micro kernel 2. Monolithic Kernel 1.  Monolithic architecture 2.      Layerd archtecture . 3.       Virtual machine architecture 4.       Exokernel architecture 5.      Client server architecture   6.       Micro kernel architecture Now let’s head into our main focus. What is an Exokern...

Monolithic Architecture

  Monolithic Architecture Monolith means composed all in one piece. The  Monolithic  application describes a single-tiered  software  application in which different components combined into a single program from a single platform. Components can be: Authorization — responsible for authorizing a user Presentation — responsible for handling HTTP requests and responding with either HTML or JSON/XML (for web services APIs). Business logic — the application’s business logic. Database layer — data access objects responsible for accessing the database. Application integration — integration with other services (e.g. via messaging or REST API). Or integration with any other Data sources. Notification module — responsible for sending email notifications whenever needed. Example for Monolithic Approach Consider an example of Ecommerce application, that authorizes customer, takes an order, check products inventory, authorize payment and ships ordered products. This applicat...

Batch Processing Operating System

  Batch processing system ·           Batch processing is one of the oldest method    of running the programs ·           The computer in the past were very large in size and their I/O devices were very different from those that are used today. The job processing was not interactive as it is today. ·           The user did not interact directly with computer system.   ·           The process scheduling , memory management, file management and I/Omanagement functions are quite simple in batch processing system   1.         Process scheduling (i.e. allocation strategy for a processor is typically in order of their arrival i.e. first come first served(FCFS)basis.   2.         Memory management  is done by divi...

Classification of Operating System

  Classification of operating systems The operating systems may be classified into different types depending upon the nature of interaction between the user and his/her program. The various types of operating system are : 1.       single user operating system    2.        Multi user operating system   3.         Batch processing operating system 4.        Multi programming operating system   5.       Multi tasking operating system   6.         Multiprocessing operating system 7.         Time sharing operating system 8.       Real time system      Distributed system Multi threading operating system       Single user operating system ·          ...

Time Sharing System and its Requirements

  Time sharing  system ·           Time sharing refers to the allocation of computer resources in a time dependent fashion to several program simultaneously ·           A time sharing system has many user terminals that are connected to same computer simultaneously. Using these terminal, different users can work on a system at the same time ·           Thus, it uses multi programming with a special CPU scheduling among all the last one, and then again beginning from the first one ·           In time sharing system, the CPU time is divided among all the users on schedule basis. ·           It release the CPU under any of the following three conditions: 1.         When the allotted time slice expires. 2.    ...