Skip to main content

ENTERPROCESS COMMUNICATION AND SYNCHRONIZATION

     

ENTERPROCESS COMMUNICATION AND SYNCHRONIZATION

·         In multi programming environment multiple process co-exit . a single  program may be broken into number of processes.

·         The process are classified into two categories : independent processes and cooperating processes.

·         An independent process is a standalone process that does not share any data with any other process. It cannot affect or be affected by the other processes executing  in the system. In other words, the modification made to an independent process does not affect the functioning of other process.

·         A cooperating processes is a process that shares data with other processes in a system it can affect or be affectedly the other processes executing in the system

·         Cooperating processes can communicate in a shred memory environment .

·         The various reasons for using cooperating processes are:

1.       Information sharing : when several  users want to access to these type of reasourses

2.       Computational speed up: a task can be broken into various subtak so that each of them can run in parallel and this gives faster computation results.

3.       To support modularity: when a system is to be created in module fashion by dividing in into small functional units, co-operating processes are required. Cooperation processes establishes communication between the different modulus.

 

INTERPROCESSES COMMUNICATION

·         Inter-process communication (IPC) is a facility provided by an operating system via which cooperating processes can communicate with each other.

·         IPC facility allows the processes to cooperate and synchronize their action without sharing the sme addresses space

·         IPC is particularly useful in a distributed environment where the communication processes may reside on different computers connected with a network. An example is chat program used in the world wide web

·         There several different methods for establishing interprocess communication. Some of these methods are:

Ø Message Passing

Ø Shared Memory

Ø Signals

Ø Shared Files ,I.E. Pipes

Ø Dynamic Data Exchange (DDE)

Ø Object Linking And Embedding(OLE)

MESSAGE PASSING MODEL

·         A message is a collection of information that may be exchanged between a sending and receiving processes.

·         A message may contain data, execution commands, or even some code to be transmitted between two or more process.

·         A message format is flexible and negotiable by each sender- reciver pair.

·         A message Is characterized by its type , length ,sender and receiver IDS and a data field.

MESSAGE FORMAT

·         The format of a message depends upon two factors:

1.       The objective of the message facilty.

2.       Whether the facility runs on a single computer or on a distributed system

·         In some operating system short, fixed length messages are preferred in order to minimize processing and storage overhead.

·         In case , a large amount of data is to be sent , the data is placed in a file and the message then simply reference that file

       

·         The header has a fixed format within a given operating system and contains the information about the message.

·         The message body is optional and contains the actual content of the message.

·         The header may contain an identification of the message a length field , and a type field to discriminate among various types of messages.

·         There may also be additional control information such as pointer field so that a linked list of message can be created ,  a sequence number , to keep track of the number and order of messages passed between source and destination and a priority field.

·         Processes generally send and receive message by using send and receive primitives:

                          Send(receiver process, message)

                          Receive (sender process, message)

·         The send and receive calls are normally implemented as operating system calls.

·         The send call sends a message to a give receiver process. The receiver call receives a message from a given sender process.

·         The following four system calls are used for message transfer among processes:

Ø  msgget(): it returns (and possibly creates ) message descriptors to designate a message from queue for in other system calls.

Ø  msgetl(): it has options to set and return parameters associated with a message descriptor. It also has an option to remove descriptors.

Ø  msgsnd(): it senda a message using a message queue.

Ø  msgrev(): it receives using a message queue.


Implementing Issues In Messages

The various implementation issues that arise in interprocess communication using messages are:

1.       naming of the sender and receiver processes : naming conventions used in the send and receive calls provide answer to some key questions:.

·         How does the sender process know the name of the receiver?

·         How does the receiver process know the name of sebder ?

2.       Message delivery protocol : protocol are the set of rules that determines the message data format and actions of processes while sending and receiving messages

3.       Operating system responsibilities : buffering of message, bloicking and waking of processes etc.

 

 

Naming

·         Processes that want to communicate must have a way to refer tro each other processes can name each other directly or indirectly.

·         If the processes use indirect naming , it is know as indirect communication.

 

 

 

Comments

Popular posts from this blog

Multitasking System

  Multitasking system ·           Technically , multitasking is same as multi programming ·           In a multitasking operating system, s single user can execute multiple programs at the same time ·           We can also say, multitasking is the system capability to work on more than one job or process at the same time. ·           It means that whenever a job needs to perform I/O operation, the cpu can be used for execting some other job                                                        diagram of multi tasking     ·           There are two type of multitasking : 1.       ...

Monolithic Architecture

  Monolithic Architecture Monolith means composed all in one piece. The  Monolithic  application describes a single-tiered  software  application in which different components combined into a single program from a single platform. Components can be: Authorization — responsible for authorizing a user Presentation — responsible for handling HTTP requests and responding with either HTML or JSON/XML (for web services APIs). Business logic — the application’s business logic. Database layer — data access objects responsible for accessing the database. Application integration — integration with other services (e.g. via messaging or REST API). Or integration with any other Data sources. Notification module — responsible for sending email notifications whenever needed. Example for Monolithic Approach Consider an example of Ecommerce application, that authorizes customer, takes an order, check products inventory, authorize payment and ships ordered products. This applicat...

Batch Processing Operating System

  Batch processing system ·           Batch processing is one of the oldest method    of running the programs ·           The computer in the past were very large in size and their I/O devices were very different from those that are used today. The job processing was not interactive as it is today. ·           The user did not interact directly with computer system.   ·           The process scheduling , memory management, file management and I/Omanagement functions are quite simple in batch processing system   1.         Process scheduling (i.e. allocation strategy for a processor is typically in order of their arrival i.e. first come first served(FCFS)basis.   2.         Memory management  is done by divi...

Change the priority of a process

  Change the priority of a process You can tell the computer that certain processes should have a higher priority than others, and so should be given a bigger share of the available computing time. This can make them run faster, but only in certain cases. You can also give a process a  lower  priority if you think it is taking up too much processing power. Go to the  Processes  tab and click on the process you want to have a different priority. Right-click the process, and use the  Change Priority  menu to assign the process a higher or lower priority. There is typically little need to change process priorities manually. The computer will usually do a good job of managing them itself. (The system for managing the priority of processes is called  nice .) Does higher priority make a process run faster? The computer shares its processing time between all of the running processes. This is normally shared intelligently, so programs that are doing more ...
 C omparison between real time and time sharing operating system P rotection and s ecurity  • Protection refers to a mechanism for controlling the access of program s processes, or users to the resources defined by computer system. • The concept of protection came with the advent of multiprogramming where several processes compete for the use of CPU. • the purpose was to confine each users program to its assigned areaof memory so that the programs cannot interface and harm each other. • Protection in main memory is particularly important because of address translation. The purpose of protection is to allow concurrently running process to share the common physical address space. • Protection also ensure that only process that have gained proper authorization from the operating system can operate on memory segment , the CPU, files and other resources.