Skip to main content

Exokernel architecture

Exokernel architecture

Most of us know what kernels are and how do they work to make programmers’ lives easier. But, how many of us know what exokernels are? I hope you will be able to get a brief introduction on this terminology through this blog.
Let’s start with a brief introduction on kernel.

What is a kernel?

A kernel is the foundational layer of an operating system that functions at a basic level, communicating with hardware and managing resources, such as CPU and the memory. It works as an interface between the user application and the hardware.

Image for post
Image for post

There are two main types of kernel
1. Micro kernel
2. Monolithic Kernel

Image for post

1. Monolithic architecture

2.    Layerd archtecture.

3.     Virtual machine architecture

4.     Exokernel architecture

5.    Client server architecture 

6.     Micro kernel architecture

Now let’s head into our main focus.

What is an Exokernel?

Exokernel is an operating system developed at the MIT that provides application-level management of hardware resources. This architecture is designed to separate resource protection from management to facilitate application-specific customization.
Let’s try to understand how this actually works.

Image for post

The ultimate idea behind the development of exokernel is to impose as few abstractions as possible on the developers of the applications by providing them with the freedom to use the abstractions as and when needed. This ensures that there is no forced abstraction, which is what makes exokernel different from micro-kernels and monolithic kernels.But, how does exokernel support this?

This is done by moving all the hardware abstractions into untrusted user-space libraries called “library operating systems” (libOS), which are linked to applications call the operating system on their behalf. So basically, the kernel allocates the basic physical resources of the machine (disk blocks, memory, and processor time) to multiple application programs, and each program decides on what to do with these resources.

For an example, an application can manage its own disk-block cache, it can also share the pages with the other applications, but the exokernel allows cached pages to be shared securely across all applications. Thus, the exokernel protects pages and disk blocks, but applications manage them.

Of course, not all applications need customized resource management. At these instances, the applications can be linked with the support libraries that implement the abstractions that the applications need. However, library implementations are unprivileged and can therefore be modified or replaced at the user’s needs as well. This helps the programmers to choose what level of abstraction they want, high, or low.

Principles of Exokernels

1. Separate protection and management : Resource management is restricted to functions necessary for protection.
2. Expose allocation : Applications allocate resources explicitly.
3. Expose name : Exokernels use physical names wherever possible.
4. Expose revocation : Exokernels let applications to choose which instance of a resource to give up.
5. Expose information : Exokernels expose all system information and collect data that applications cannot easily derive locally.

Merits of Exokernels

  1. Significant performance increase.
  2. Applications can make more efficient and intelligent use of hardware resources by being aware of resource availability, revocation and allocation.
  3. Ease development and testing of new operating system ideas. (New scheduling techniques, memory management methods, etc)

Demrits of Exokernels

1. Complexity in design of exokernel interfaces.
2. Less consistency.

Comments

Popular posts from this blog

Multitasking System

  Multitasking system ·           Technically , multitasking is same as multi programming ·           In a multitasking operating system, s single user can execute multiple programs at the same time ·           We can also say, multitasking is the system capability to work on more than one job or process at the same time. ·           It means that whenever a job needs to perform I/O operation, the cpu can be used for execting some other job                                                        diagram of multi tasking     ·           There are two type of multitasking : 1.       ...

Batch Processing Operating System

  Batch processing system ·           Batch processing is one of the oldest method    of running the programs ·           The computer in the past were very large in size and their I/O devices were very different from those that are used today. The job processing was not interactive as it is today. ·           The user did not interact directly with computer system.   ·           The process scheduling , memory management, file management and I/Omanagement functions are quite simple in batch processing system   1.         Process scheduling (i.e. allocation strategy for a processor is typically in order of their arrival i.e. first come first served(FCFS)basis.   2.         Memory management  is done by divi...

Monolithic Architecture

  Monolithic Architecture Monolith means composed all in one piece. The  Monolithic  application describes a single-tiered  software  application in which different components combined into a single program from a single platform. Components can be: Authorization — responsible for authorizing a user Presentation — responsible for handling HTTP requests and responding with either HTML or JSON/XML (for web services APIs). Business logic — the application’s business logic. Database layer — data access objects responsible for accessing the database. Application integration — integration with other services (e.g. via messaging or REST API). Or integration with any other Data sources. Notification module — responsible for sending email notifications whenever needed. Example for Monolithic Approach Consider an example of Ecommerce application, that authorizes customer, takes an order, check products inventory, authorize payment and ships ordered products. This applicat...

Change the priority of a process

  Change the priority of a process You can tell the computer that certain processes should have a higher priority than others, and so should be given a bigger share of the available computing time. This can make them run faster, but only in certain cases. You can also give a process a  lower  priority if you think it is taking up too much processing power. Go to the  Processes  tab and click on the process you want to have a different priority. Right-click the process, and use the  Change Priority  menu to assign the process a higher or lower priority. There is typically little need to change process priorities manually. The computer will usually do a good job of managing them itself. (The system for managing the priority of processes is called  nice .) Does higher priority make a process run faster? The computer shares its processing time between all of the running processes. This is normally shared intelligently, so programs that are doing more ...
 C omparison between real time and time sharing operating system P rotection and s ecurity  • Protection refers to a mechanism for controlling the access of program s processes, or users to the resources defined by computer system. • The concept of protection came with the advent of multiprogramming where several processes compete for the use of CPU. • the purpose was to confine each users program to its assigned areaof memory so that the programs cannot interface and harm each other. • Protection in main memory is particularly important because of address translation. The purpose of protection is to allow concurrently running process to share the common physical address space. • Protection also ensure that only process that have gained proper authorization from the operating system can operate on memory segment , the CPU, files and other resources.