Skip to main content

Exokernel architecture

Exokernel architecture

Most of us know what kernels are and how do they work to make programmers’ lives easier. But, how many of us know what exokernels are? I hope you will be able to get a brief introduction on this terminology through this blog.
Let’s start with a brief introduction on kernel.

What is a kernel?

A kernel is the foundational layer of an operating system that functions at a basic level, communicating with hardware and managing resources, such as CPU and the memory. It works as an interface between the user application and the hardware.

Image for post
Image for post

There are two main types of kernel
1. Micro kernel
2. Monolithic Kernel

Image for post

1. Monolithic architecture

2.    Layerd archtecture.

3.     Virtual machine architecture

4.     Exokernel architecture

5.    Client server architecture 

6.     Micro kernel architecture

Now let’s head into our main focus.

What is an Exokernel?

Exokernel is an operating system developed at the MIT that provides application-level management of hardware resources. This architecture is designed to separate resource protection from management to facilitate application-specific customization.
Let’s try to understand how this actually works.

Image for post

The ultimate idea behind the development of exokernel is to impose as few abstractions as possible on the developers of the applications by providing them with the freedom to use the abstractions as and when needed. This ensures that there is no forced abstraction, which is what makes exokernel different from micro-kernels and monolithic kernels.But, how does exokernel support this?

This is done by moving all the hardware abstractions into untrusted user-space libraries called “library operating systems” (libOS), which are linked to applications call the operating system on their behalf. So basically, the kernel allocates the basic physical resources of the machine (disk blocks, memory, and processor time) to multiple application programs, and each program decides on what to do with these resources.

For an example, an application can manage its own disk-block cache, it can also share the pages with the other applications, but the exokernel allows cached pages to be shared securely across all applications. Thus, the exokernel protects pages and disk blocks, but applications manage them.

Of course, not all applications need customized resource management. At these instances, the applications can be linked with the support libraries that implement the abstractions that the applications need. However, library implementations are unprivileged and can therefore be modified or replaced at the user’s needs as well. This helps the programmers to choose what level of abstraction they want, high, or low.

Principles of Exokernels

1. Separate protection and management : Resource management is restricted to functions necessary for protection.
2. Expose allocation : Applications allocate resources explicitly.
3. Expose name : Exokernels use physical names wherever possible.
4. Expose revocation : Exokernels let applications to choose which instance of a resource to give up.
5. Expose information : Exokernels expose all system information and collect data that applications cannot easily derive locally.

Merits of Exokernels

  1. Significant performance increase.
  2. Applications can make more efficient and intelligent use of hardware resources by being aware of resource availability, revocation and allocation.
  3. Ease development and testing of new operating system ideas. (New scheduling techniques, memory management methods, etc)

Demrits of Exokernels

1. Complexity in design of exokernel interfaces.
2. Less consistency.

Comments

Popular posts from this blog

Multi Level Queue Scheduling (MLQ)

  Multi Level Queue Scheduling (MLQ) ·          Multilevel queue scheduling classifies the processes according to their types for example, a multilevel queue scheduling algorithm makes a common. ·          In this scheduling ready queue is divided into various queue that are called sub queues. A subqueue is a distinct operational queue ·          The process are permanently assigned to subqueues, generally based on some property of the process such as memory size,priority or process type ·          Each subqueue has its process sucheduling algorithm. For example interactive process at the foreground may use round robin scheduling while batch jobs at the background may use the FCFS method ·          For example, consider a system with four different queues 1.   ...

Micro kernel architecture

  Micro kernel  architecture What is Kernel? A kernel is an important part of an OS that manages system resources. It also acts as a bridge between the software and hardware of the computer. It is one of the first program which is loaded on start-up after the bootloader. The Kernel is also responsible for offering secure access to the machine's hardware for various programs. It also decides when and how long a certain application uses specific hardware. What is Microkernel? Microkernel  is a software or code which contains the required minimum amount of functions, data, and features to implement an operating system. It provides a minimal number of mechanisms, which is good enough to run the most basic functions of an operating system. It allows other parts of the operating system to be implemented as it does not impose a lot of policies. Microkernels and their user environments are usually implemented in the C++ or C programming languages with a little bit of assembly. Ho...

Shortest Job First Scheduling (SJF)

  Shortest Job First Scheduling (SJF) ·          SJF ia also known as shortest-job-next(SJN) algorithm and is faster than FCFS. ·          In SJF, the process with the least estimated execution time is selected from the ready queue for   execution. ·          For this, SJF algorithm associates with each process, the length of its next CPU burst. When the CPU is available, it is assigned to the process that has the smallest next CPU burst. ·          If tow processes have the same length of next CPU burst ,FCFS scheduling algorithm is used to break the tie. ·          SJF algorithm can be preemptive or non-preemptive.     Non-preeptive SJF ·          In non-preemptive SJF, scheduling, CPU is always assigned to the ...

Monolithic Architecture

  Monolithic Architecture Monolith means composed all in one piece. The  Monolithic  application describes a single-tiered  software  application in which different components combined into a single program from a single platform. Components can be: Authorization — responsible for authorizing a user Presentation — responsible for handling HTTP requests and responding with either HTML or JSON/XML (for web services APIs). Business logic — the application’s business logic. Database layer — data access objects responsible for accessing the database. Application integration — integration with other services (e.g. via messaging or REST API). Or integration with any other Data sources. Notification module — responsible for sending email notifications whenever needed. Example for Monolithic Approach Consider an example of Ecommerce application, that authorizes customer, takes an order, check products inventory, authorize payment and ships ordered products. This applicat...