Skip to main content

Layered Operating System

 

Layered Operating System

Layered Structure is a type of system structure in which the different services of the operating system are split into various layers, where each layer has a specific well-defined task to perform. It was created to improve the pre-existing structures like the Monolithic structure ( UNIX ) and the Simple structure ( MS-DOS ).

Example – The Windows NT operating system uses this layered approach as a part of it.

Design Analysis :
The whole Operating System is separated into several layers ( from 0 to n ) as the diagram shows. Each of the layers must have its own specific function to perform. There are some rules in the implementation of the layers as follows.

  1. The outermost layer must be the User Interface layer.
  2. The innermost layer must be the Hardware layer.
  3. A particular layer can access all the layers present below it but it cannot access the layers present above it. That is layer n-1 can access all the layers from n-2 to 0 but it cannot access the nth layer.

Thus if the user layer wants to interact with the hardware layer, the response will be traveled through all the layers from n-1 to 1. Each layer must be designed and implemented such that it will need only the services provided by the layers below it.

Layered OS Design

1. Monolithic architecture

2.    Layerd archtecture.

3.     Virtual machine architecture

4.     Exokernel architecture

5.    Client server architecture 

6.     Micro kernel architecture

Advantages :
There are several advantages to this design :

  1. Modularity :
    This design promotes modularity as each layer performs only the tasks it is scheduled to perform.
  2. Easy debugging :
    As the layers are discrete so it is very easy to debug. Suppose an error occurs in the CPU scheduling layer, so the developer can only search that particular layer to debug, unlike the Monolithic system in which all the services are present together.
  3. Easy update :
    A modification made in a particular layer will not affect the other layers.
  4. No direct access to hardware :
    The hardware layer is the innermost layer present in the design. So a user can use the services of hardware but cannot directly modify or access it, unlike the Simple system in which the user had direct access to the hardware.
  5. Abstraction :
    Every layer is concerned with its own functions. So the functions and implementations of the other layers are abstract to it.

Disadvantages :
Though this system has several advantages over the Monolithic and Simple design, there are also some disadvantages as follows.

  1. Complex and careful implementation :
    As a layer can access the services of the layers below it, so the arrangement of the layers must be done carefully. For example, the backing storage layer uses the services of the memory management layer. So it must be kept below the memory management layer. Thus with great modularity comes complex implementation.
  2. Slower in execution :
    If a layer wants to interact with another layer, it sends a request that has to travel through all the layers present in between the two interacting layers. Thus it increases response time, unlike the Monolithic system which is faster than this. Thus an increase in the number of layers may lead to a very inefficient design.

Attention reader! Don’t stop learning now. Get hold of all the important CS Theory concepts for SDE interviews with the CS Theory Course at a student-friendly price and become industry ready.


Comments

Popular posts from this blog

Defination of OS(operating system) and its concepts

    What do you mean by operating system?     Definition :  An operating system is a program that act as an interface between the user of a computer and the                                      Computer hardware. Operating system is a first program that gets loaded into the memory through a process called booting. Concepts of operating system : ·                       The purpose of operating system is to provide an environment in which a user can execute program in a convenient and efficient manner. ·                       Operating system is an integrated set of program that ma...

Monolithic Architecture

  Monolithic Architecture Monolith means composed all in one piece. The  Monolithic  application describes a single-tiered  software  application in which different components combined into a single program from a single platform. Components can be: Authorization — responsible for authorizing a user Presentation — responsible for handling HTTP requests and responding with either HTML or JSON/XML (for web services APIs). Business logic — the application’s business logic. Database layer — data access objects responsible for accessing the database. Application integration — integration with other services (e.g. via messaging or REST API). Or integration with any other Data sources. Notification module — responsible for sending email notifications whenever needed. Example for Monolithic Approach Consider an example of Ecommerce application, that authorizes customer, takes an order, check products inventory, authorize payment and ships ordered products. This applicat...

System structure operating architecture

  System structure operating  architecture An operating system is a construct that allows the user application programs to interact with the system hardware. Since the operating system is such a complex structure, it should be created with utmost care so it can be used and modified easily. An easy way to do this is to create the operating system in parts. Each of these parts should be well defined with clear inputs, outputs and functions. Simple Structure There are many operating systems that have a rather simple structure. These started as small systems and rapidly expanded much further than their scope. A common example of this is MS-DOS. It was designed simply for a niche amount for people. There was no indication that it would become so popular. An image to illustrate the structure of MS-DOS is as follows − It is better that operating systems have a modular structure, unlike MS-DOS. That would lead to greater control over the computer system and its various applications. T...

Classification of Operating System

  Classification of operating systems The operating systems may be classified into different types depending upon the nature of interaction between the user and his/her program. The various types of operating system are : 1.       single user operating system    2.        Multi user operating system   3.         Batch processing operating system 4.        Multi programming operating system   5.       Multi tasking operating system   6.         Multiprocessing operating system 7.         Time sharing operating system 8.       Real time system      Distributed system Multi threading operating system       Single user operating system ·          ...

Change the priority of a process

  Change the priority of a process You can tell the computer that certain processes should have a higher priority than others, and so should be given a bigger share of the available computing time. This can make them run faster, but only in certain cases. You can also give a process a  lower  priority if you think it is taking up too much processing power. Go to the  Processes  tab and click on the process you want to have a different priority. Right-click the process, and use the  Change Priority  menu to assign the process a higher or lower priority. There is typically little need to change process priorities manually. The computer will usually do a good job of managing them itself. (The system for managing the priority of processes is called  nice .) Does higher priority make a process run faster? The computer shares its processing time between all of the running processes. This is normally shared intelligently, so programs that are doing more ...